3.3092 \(\int (a+b x)^m (c+d x)^{-5-m} \, dx\)

Optimal. Leaf size=185 \[ \frac{6 b^3 (a+b x)^{m+1} (c+d x)^{-m-1}}{(m+1) (m+2) (m+3) (m+4) (b c-a d)^4}+\frac{6 b^2 (a+b x)^{m+1} (c+d x)^{-m-2}}{(m+2) (m+3) (m+4) (b c-a d)^3}+\frac{(a+b x)^{m+1} (c+d x)^{-m-4}}{(m+4) (b c-a d)}+\frac{3 b (a+b x)^{m+1} (c+d x)^{-m-3}}{(m+3) (m+4) (b c-a d)^2} \]

[Out]

((a + b*x)^(1 + m)*(c + d*x)^(-4 - m))/((b*c - a*d)*(4 + m)) + (3*b*(a + b*x)^(1
 + m)*(c + d*x)^(-3 - m))/((b*c - a*d)^2*(3 + m)*(4 + m)) + (6*b^2*(a + b*x)^(1
+ m)*(c + d*x)^(-2 - m))/((b*c - a*d)^3*(2 + m)*(3 + m)*(4 + m)) + (6*b^3*(a + b
*x)^(1 + m)*(c + d*x)^(-1 - m))/((b*c - a*d)^4*(1 + m)*(2 + m)*(3 + m)*(4 + m))

_______________________________________________________________________________________

Rubi [A]  time = 0.23568, antiderivative size = 185, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 2, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.105 \[ \frac{6 b^3 (a+b x)^{m+1} (c+d x)^{-m-1}}{(m+1) (m+2) (m+3) (m+4) (b c-a d)^4}+\frac{6 b^2 (a+b x)^{m+1} (c+d x)^{-m-2}}{(m+2) (m+3) (m+4) (b c-a d)^3}+\frac{(a+b x)^{m+1} (c+d x)^{-m-4}}{(m+4) (b c-a d)}+\frac{3 b (a+b x)^{m+1} (c+d x)^{-m-3}}{(m+3) (m+4) (b c-a d)^2} \]

Antiderivative was successfully verified.

[In]  Int[(a + b*x)^m*(c + d*x)^(-5 - m),x]

[Out]

((a + b*x)^(1 + m)*(c + d*x)^(-4 - m))/((b*c - a*d)*(4 + m)) + (3*b*(a + b*x)^(1
 + m)*(c + d*x)^(-3 - m))/((b*c - a*d)^2*(3 + m)*(4 + m)) + (6*b^2*(a + b*x)^(1
+ m)*(c + d*x)^(-2 - m))/((b*c - a*d)^3*(2 + m)*(3 + m)*(4 + m)) + (6*b^3*(a + b
*x)^(1 + m)*(c + d*x)^(-1 - m))/((b*c - a*d)^4*(1 + m)*(2 + m)*(3 + m)*(4 + m))

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 57.4559, size = 153, normalized size = 0.83 \[ \frac{6 b^{3} \left (a + b x\right )^{m + 1} \left (c + d x\right )^{- m - 1}}{\left (m + 1\right ) \left (m + 2\right ) \left (m + 3\right ) \left (m + 4\right ) \left (a d - b c\right )^{4}} - \frac{6 b^{2} \left (a + b x\right )^{m + 1} \left (c + d x\right )^{- m - 2}}{\left (m + 2\right ) \left (m + 3\right ) \left (m + 4\right ) \left (a d - b c\right )^{3}} + \frac{3 b \left (a + b x\right )^{m + 1} \left (c + d x\right )^{- m - 3}}{\left (m + 3\right ) \left (m + 4\right ) \left (a d - b c\right )^{2}} - \frac{\left (a + b x\right )^{m + 1} \left (c + d x\right )^{- m - 4}}{\left (m + 4\right ) \left (a d - b c\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((b*x+a)**m*(d*x+c)**(-5-m),x)

[Out]

6*b**3*(a + b*x)**(m + 1)*(c + d*x)**(-m - 1)/((m + 1)*(m + 2)*(m + 3)*(m + 4)*(
a*d - b*c)**4) - 6*b**2*(a + b*x)**(m + 1)*(c + d*x)**(-m - 2)/((m + 2)*(m + 3)*
(m + 4)*(a*d - b*c)**3) + 3*b*(a + b*x)**(m + 1)*(c + d*x)**(-m - 3)/((m + 3)*(m
 + 4)*(a*d - b*c)**2) - (a + b*x)**(m + 1)*(c + d*x)**(-m - 4)/((m + 4)*(a*d - b
*c))

_______________________________________________________________________________________

Mathematica [A]  time = 0.493276, size = 181, normalized size = 0.98 \[ \frac{(a+b x)^m (c+d x)^{-m} \left (\frac{6 b^4}{(m+1) (m+2) (m+3) (m+4) (b c-a d)^4}+\frac{6 b^3 m}{(m+1) \left (m^3+9 m^2+26 m+24\right ) (c+d x) (b c-a d)^3}+\frac{3 b^2 m}{(m+2) \left (m^2+7 m+12\right ) (c+d x)^2 (b c-a d)^2}+\frac{b m}{(m+3) (m+4) (c+d x)^3 (b c-a d)}-\frac{1}{(m+4) (c+d x)^4}\right )}{d} \]

Antiderivative was successfully verified.

[In]  Integrate[(a + b*x)^m*(c + d*x)^(-5 - m),x]

[Out]

((a + b*x)^m*((6*b^4)/((b*c - a*d)^4*(1 + m)*(2 + m)*(3 + m)*(4 + m)) - 1/((4 +
m)*(c + d*x)^4) + (b*m)/((b*c - a*d)*(3 + m)*(4 + m)*(c + d*x)^3) + (3*b^2*m)/((
b*c - a*d)^2*(2 + m)*(12 + 7*m + m^2)*(c + d*x)^2) + (6*b^3*m)/((b*c - a*d)^3*(1
 + m)*(24 + 26*m + 9*m^2 + m^3)*(c + d*x))))/(d*(c + d*x)^m)

_______________________________________________________________________________________

Maple [B]  time = 0.013, size = 662, normalized size = 3.6 \[ -{\frac{ \left ( bx+a \right ) ^{1+m} \left ( dx+c \right ) ^{-4-m} \left ({a}^{3}{d}^{3}{m}^{3}-3\,{a}^{2}bc{d}^{2}{m}^{3}-3\,{a}^{2}b{d}^{3}{m}^{2}x+3\,a{b}^{2}{c}^{2}d{m}^{3}+6\,a{b}^{2}c{d}^{2}{m}^{2}x+6\,a{b}^{2}{d}^{3}m{x}^{2}-{b}^{3}{c}^{3}{m}^{3}-3\,{b}^{3}{c}^{2}d{m}^{2}x-6\,{b}^{3}c{d}^{2}m{x}^{2}-6\,{b}^{3}{d}^{3}{x}^{3}+6\,{a}^{3}{d}^{3}{m}^{2}-21\,{a}^{2}bc{d}^{2}{m}^{2}-9\,{a}^{2}b{d}^{3}mx+24\,a{b}^{2}{c}^{2}d{m}^{2}+30\,a{b}^{2}c{d}^{2}mx+6\,a{b}^{2}{d}^{3}{x}^{2}-9\,{b}^{3}{c}^{3}{m}^{2}-21\,{b}^{3}{c}^{2}dmx-24\,{b}^{3}c{d}^{2}{x}^{2}+11\,{a}^{3}{d}^{3}m-42\,{a}^{2}bc{d}^{2}m-6\,{a}^{2}b{d}^{3}x+57\,a{b}^{2}{c}^{2}dm+24\,a{b}^{2}c{d}^{2}x-26\,{b}^{3}{c}^{3}m-36\,{b}^{3}{c}^{2}dx+6\,{a}^{3}{d}^{3}-24\,{a}^{2}bc{d}^{2}+36\,a{b}^{2}{c}^{2}d-24\,{b}^{3}{c}^{3} \right ) }{{a}^{4}{d}^{4}{m}^{4}-4\,{a}^{3}bc{d}^{3}{m}^{4}+6\,{a}^{2}{b}^{2}{c}^{2}{d}^{2}{m}^{4}-4\,a{b}^{3}{c}^{3}d{m}^{4}+{b}^{4}{c}^{4}{m}^{4}+10\,{a}^{4}{d}^{4}{m}^{3}-40\,{a}^{3}bc{d}^{3}{m}^{3}+60\,{a}^{2}{b}^{2}{c}^{2}{d}^{2}{m}^{3}-40\,a{b}^{3}{c}^{3}d{m}^{3}+10\,{b}^{4}{c}^{4}{m}^{3}+35\,{a}^{4}{d}^{4}{m}^{2}-140\,{a}^{3}bc{d}^{3}{m}^{2}+210\,{a}^{2}{b}^{2}{c}^{2}{d}^{2}{m}^{2}-140\,a{b}^{3}{c}^{3}d{m}^{2}+35\,{b}^{4}{c}^{4}{m}^{2}+50\,{a}^{4}{d}^{4}m-200\,{a}^{3}bc{d}^{3}m+300\,{a}^{2}{b}^{2}{c}^{2}{d}^{2}m-200\,a{b}^{3}{c}^{3}dm+50\,{b}^{4}{c}^{4}m+24\,{a}^{4}{d}^{4}-96\,{a}^{3}bc{d}^{3}+144\,{a}^{2}{b}^{2}{c}^{2}{d}^{2}-96\,a{b}^{3}{c}^{3}d+24\,{b}^{4}{c}^{4}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((b*x+a)^m*(d*x+c)^(-5-m),x)

[Out]

-(b*x+a)^(1+m)*(d*x+c)^(-4-m)*(a^3*d^3*m^3-3*a^2*b*c*d^2*m^3-3*a^2*b*d^3*m^2*x+3
*a*b^2*c^2*d*m^3+6*a*b^2*c*d^2*m^2*x+6*a*b^2*d^3*m*x^2-b^3*c^3*m^3-3*b^3*c^2*d*m
^2*x-6*b^3*c*d^2*m*x^2-6*b^3*d^3*x^3+6*a^3*d^3*m^2-21*a^2*b*c*d^2*m^2-9*a^2*b*d^
3*m*x+24*a*b^2*c^2*d*m^2+30*a*b^2*c*d^2*m*x+6*a*b^2*d^3*x^2-9*b^3*c^3*m^2-21*b^3
*c^2*d*m*x-24*b^3*c*d^2*x^2+11*a^3*d^3*m-42*a^2*b*c*d^2*m-6*a^2*b*d^3*x+57*a*b^2
*c^2*d*m+24*a*b^2*c*d^2*x-26*b^3*c^3*m-36*b^3*c^2*d*x+6*a^3*d^3-24*a^2*b*c*d^2+3
6*a*b^2*c^2*d-24*b^3*c^3)/(a^4*d^4*m^4-4*a^3*b*c*d^3*m^4+6*a^2*b^2*c^2*d^2*m^4-4
*a*b^3*c^3*d*m^4+b^4*c^4*m^4+10*a^4*d^4*m^3-40*a^3*b*c*d^3*m^3+60*a^2*b^2*c^2*d^
2*m^3-40*a*b^3*c^3*d*m^3+10*b^4*c^4*m^3+35*a^4*d^4*m^2-140*a^3*b*c*d^3*m^2+210*a
^2*b^2*c^2*d^2*m^2-140*a*b^3*c^3*d*m^2+35*b^4*c^4*m^2+50*a^4*d^4*m-200*a^3*b*c*d
^3*m+300*a^2*b^2*c^2*d^2*m-200*a*b^3*c^3*d*m+50*b^4*c^4*m+24*a^4*d^4-96*a^3*b*c*
d^3+144*a^2*b^2*c^2*d^2-96*a*b^3*c^3*d+24*b^4*c^4)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int{\left (b x + a\right )}^{m}{\left (d x + c\right )}^{-m - 5}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x + a)^m*(d*x + c)^(-m - 5),x, algorithm="maxima")

[Out]

integrate((b*x + a)^m*(d*x + c)^(-m - 5), x)

_______________________________________________________________________________________

Fricas [A]  time = 0.24129, size = 1288, normalized size = 6.96 \[ \text{result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x + a)^m*(d*x + c)^(-m - 5),x, algorithm="fricas")

[Out]

(6*b^4*d^4*x^5 + 24*a*b^3*c^4 - 36*a^2*b^2*c^3*d + 24*a^3*b*c^2*d^2 - 6*a^4*c*d^
3 + 6*(5*b^4*c*d^3 + (b^4*c*d^3 - a*b^3*d^4)*m)*x^4 + (a*b^3*c^4 - 3*a^2*b^2*c^3
*d + 3*a^3*b*c^2*d^2 - a^4*c*d^3)*m^3 + 3*(20*b^4*c^2*d^2 + (b^4*c^2*d^2 - 2*a*b
^3*c*d^3 + a^2*b^2*d^4)*m^2 + (9*b^4*c^2*d^2 - 10*a*b^3*c*d^3 + a^2*b^2*d^4)*m)*
x^3 + 3*(3*a*b^3*c^4 - 8*a^2*b^2*c^3*d + 7*a^3*b*c^2*d^2 - 2*a^4*c*d^3)*m^2 + (6
0*b^4*c^3*d + (b^4*c^3*d - 3*a*b^3*c^2*d^2 + 3*a^2*b^2*c*d^3 - a^3*b*d^4)*m^3 +
3*(4*b^4*c^3*d - 9*a*b^3*c^2*d^2 + 6*a^2*b^2*c*d^3 - a^3*b*d^4)*m^2 + (47*b^4*c^
3*d - 60*a*b^3*c^2*d^2 + 15*a^2*b^2*c*d^3 - 2*a^3*b*d^4)*m)*x^2 + (26*a*b^3*c^4
- 57*a^2*b^2*c^3*d + 42*a^3*b*c^2*d^2 - 11*a^4*c*d^3)*m + (24*b^4*c^4 + 24*a*b^3
*c^3*d - 36*a^2*b^2*c^2*d^2 + 24*a^3*b*c*d^3 - 6*a^4*d^4 + (b^4*c^4 - 2*a*b^3*c^
3*d + 2*a^3*b*c*d^3 - a^4*d^4)*m^3 + 3*(3*b^4*c^4 - 4*a*b^3*c^3*d - 3*a^2*b^2*c^
2*d^2 + 6*a^3*b*c*d^3 - 2*a^4*d^4)*m^2 + (26*b^4*c^4 - 10*a*b^3*c^3*d - 45*a^2*b
^2*c^2*d^2 + 40*a^3*b*c*d^3 - 11*a^4*d^4)*m)*x)*(b*x + a)^m*(d*x + c)^(-m - 5)/(
24*b^4*c^4 - 96*a*b^3*c^3*d + 144*a^2*b^2*c^2*d^2 - 96*a^3*b*c*d^3 + 24*a^4*d^4
+ (b^4*c^4 - 4*a*b^3*c^3*d + 6*a^2*b^2*c^2*d^2 - 4*a^3*b*c*d^3 + a^4*d^4)*m^4 +
10*(b^4*c^4 - 4*a*b^3*c^3*d + 6*a^2*b^2*c^2*d^2 - 4*a^3*b*c*d^3 + a^4*d^4)*m^3 +
 35*(b^4*c^4 - 4*a*b^3*c^3*d + 6*a^2*b^2*c^2*d^2 - 4*a^3*b*c*d^3 + a^4*d^4)*m^2
+ 50*(b^4*c^4 - 4*a*b^3*c^3*d + 6*a^2*b^2*c^2*d^2 - 4*a^3*b*c*d^3 + a^4*d^4)*m)

_______________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \[ \text{Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x+a)**m*(d*x+c)**(-5-m),x)

[Out]

Timed out

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int{\left (b x + a\right )}^{m}{\left (d x + c\right )}^{-m - 5}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((b*x + a)^m*(d*x + c)^(-m - 5),x, algorithm="giac")

[Out]

integrate((b*x + a)^m*(d*x + c)^(-m - 5), x)